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We consider space- and t ime-uniform d-dimensional r andom processes with 
linear local interaction, which we call harnesses and which may be used as 
discrete mathematical  models of  r andom interfaces. Their components  are real 
random variables ate, where s ~ Z d and t = 0, 1, 2 ..... At every time step two 
events occur: first, every component  turns into a linear combinat ion of its N 
neighbors, and second, a symmetric r andom i.i.d. "noise" v is added to every 
component.  For any ere Za+ define A~a~ as follows. If a = (0,..., 0), A~ats = d s. 
Then by induction, A~+,.ats=A,,a~+~-A~at~, where ei is the d-dimensional 
vector, whose ith component  is one and other components  are zeros. Denote lal 
the sum of components  of a. Call a real r andom variable ~ symmetric if it is 
distributed as - ( .  For any symmetric random variable ( power decay or 
P-decay is defined as the sup remum of those r for which the rth absolute 
moment  of ~ is finite. Convergence a.s., in probability and in law when t ~ oo is 
examined in terms of P-decay(v): If d =  1, a = 0  or d = 2 ,  a = ( 0 , 0 ) ,  Aoa~ 
diverges. In all the other cases: If P-decay(v) < (d + 2)/(d + I~1), Aoats diverges; 
if P-decay(v)> ( d + 2 ) / ( d +  lal), A~a's converges and  P-decay(lim A,,ats) = 
P-decay(v). For  any symmetric r andom variable ~ exponential decay or E-decay 
is defined as the supremum of those r for which the expectation of exp(lxl r) is 
finite. Let E-decay(v)> 0. Whenever  A,ats converges (that is, if d > 2 or [a[ > 0): 
If d > 2 ,  E-decay(lima's)=min(E-decay(v),(d+2)/2); if l a l = l ,  E-decay 
(lira Aoa's)= min(E-decay(v), d +  2); if lal >/2, E-decay(lira Aoa~.)= E-decay(v). 
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1. BACKGROUND,  DEFINITIONS, AND FORMULATIONS 

Some of the most important models of mathematical physics are not 
restricted to one area of physics; instead they provide mathematical 
apparatus which can be used in different areas. We suggest that harnesses 
considered here share this property. Harnesses (defined below) are a 
generalization of "one-sided harnesses" introduced by Hammersley. (6~ His 
motivation was to study and explain long-range correlation between sub- 
grains of metals. Without this correlation no crystallic structure would be 
possible. The Edwards-Wilkinson equation (4~ is a continuous analog of 
harnesses, although its primary physical counterpart  was quite different: 
it was surface fluctuations in a settled granular material. Thus we conclude 
that harnesses deserve to be studied in general. 

Components of our processes are real random variables, or r.v. for 
short, which are indexed by d-dimensional vectors with integer components, 
denoted s ~ Z  d. Choose a natural number N > ~ d + l  and N different 
d-dimensional vectors vL ..... VN with integer components, whose differences 
generate Z a. Components s+v~ ..... S+VN are those which influence the 
component s at every step of the discrete time; we call them neighbors of 
s. Also choose intensities of these influences, that is, N positive numbers 
w~,..., WN, whose sum equals 1. We define a harness as a joint distribution 
of r.v. ate, where s ~ Z ~ and t = 0, 1, 2,..., which is induced by the distribu- 
tion of i.i.d, random variables v~., every one of which is distributed as a 
given nonconstant symmetric r.v. v, which we call noise, with the map, 
defined in the following inductive way: 

N 

a~-t- ~ Wi . as+v i t - I  --~- l~, for all t =  1,2, 3 .... (1) 
i = 1  

0 Here a s are components of the initial condition, which we assume to be 
zeros. Thus a harness is specified by a number N, by Vl,..., vN and 
Wl ..... WN, which satisfy the mentioned conditions, and by a symmetric 
r.v.v. All the values which depend only on these parameters will be called 
constants. 

Time and space in our processes are discrete, as in Chapter 9 of (11) 
and papers cited there. However, our models may be compared with those 
with continuous space and time, which are widely discussed in the physical 
literature (see e.g. refs. 1, 7, 9, 13, 14, and 17). The random noise v is 
symmetric, but otherwise arbitrary in this paper. We show that the tail of 
the distribution of noise influences the behavior of the system. Similar 
phenomena have been observed in the physical literature: "the influence of 
the noise distribution comes as a surprise, since such microscopic details are 
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traditionally expected to be irrelevant for the large scale, long time proper- 
ties. ''(9) "For  the present growth problem I shall show that microscopic 
details can indeed influence large scale behavior in a substantial way, thus 
violating the naive universality concept. ''(~7) 

Derivatives of some physical quantities are also important  physical 
quantities. In our case space and time are discrete, so we need to consider 
discrete analogs of derivatives: iterated differences. We denote them A , a '  s 
for all a e Z a + ,  where Z+  = {0, 1, 2,...}, and define them in the following 
way. If  all components  of a are zeros, A~a's = a~. After that define by induc- 
tion for all a, i, s, t 

Aa +e a2 = A~ats +ei - zJ~a~. (2) 

where ei is the d-dimensional vector, whose ith component  equals one and 
all the other components  are zeros. Note  that  this definition is consistent. 
Even when ats diverge when t ~ oe, their differences A~a'  s may well converge, 
as shown by our Theorem 1, and we believe that  it is their convergence which 
makes it possible to use our  models to describe such compact  physical 
phenomena as interfaces. Indeed, when physicists speak about  an "interface" 
they certainly mean something that can be localized and does not dissipate. 

It  seems clear that the first differences (those with lal = 1) are physi- 
cally relevant. If  a', represent the orientation of subgrains in metals, a s  in 
ref. 6, absolute values of their first differences may influence the metal 's 
strength: while first differences are small enough, the metal remains strong, 
even if a~ diverge. If  a~. represent the height of a sandpile, as in ref. 4, their 
first differences are components  of the gradient. We may  expect the 
sandpile to be stable while the norm of the gradient remains small enough 
everywhere, even if the height diverges. 2 We do not  discuss the physical 
relevance of higher differences (those with lal > 1), but  hope to show in the 
future that some of them are also relevant. 

Given a r.v. 4, we denote F(x)  = Fr --- F(x [ ~) = Prob(~ < x) its dis- 
tribution function and if(x) = 1 - F(x).  For  any r > 0 denote Mr(~ ) the r th  
absolute moment  of ~, that is, the expectation of I~1 r. If  r = 0, we define 
M0(~) = 1. We use two characteristics of how fast a symmetric random dis- 
tribution decays at infinity: P-decay and E-decay. Given a symmetric r.v. ~, 
call its power  decay, or P-decay for short, the supremum of those r for 
which the r th  absolute moment  of ~ is finite. P-decay can equal any non- 
negative number  or infinity. For  example, P-decay (~) equals r > 0  if 
dFr + Ix] r+ 1). P-decay is used in Theorem 1, which gives 

2 See a discussion of avalanches in ref. 13. See also a discussion of the distinction between 
bounded and unbounded slopes in ref. 14. See also ref. 16, where d= 1 and the convergence 
and limit distribution of A ~ a' s are important. 
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criteria of  convergence for harnesses, and in Theorem 2, which gives criteria 
of  convergence for some r a n d o m  series. 

T h e o r e m  1. For  any  harness: 

(a) If  d = 1, a = 0 or  d = 2, a = (0, 0), a~ diverges when t ~ oo.3 

(b) In  all the other  cases, that  is, if d > 2  or  ]a[ > 0 :  

�9 If  P-decay(v)  < (d + 2) / (d  + la]), A~a~ diverges when t ~ or. 

~ If  P-decay(v)  > (d  + 2) / (d  + l a[ ), d ~ a t s converges when t -~ oo and 
P-decay( l imt_  oo d~ats) = P-decay(v).  4 

Here and in similar cases convergence and divergence are a.s., in probabi l i ty  
and in law. la] denotes the sum of  componen t s  o fa .  Theorem 1 follows from 
Theorem 2, which we are going to formulate. 

Given a sequence p~, P2 . . . .  of  nonnegat ive numbers  which tends to 
zero, call Deg(pk) or  the degree of  this sequence the sup remum of  those r 
for which the series Z k ~ l  p~ diverges. No te  that  degree o f  a sequence does 
no t  change when we permute  its terms and delete zero terms. Using this, 
we may  assume wi thout  any  substantial loss of  generality that  Pk ~ Pk + ~ > 0 
for all k. Under  this assumption 

Deg(pk) = lim sup (--logpk k)  = 1/lim inf ( --1Ogk Pk) (3) 
k ~ o o  k ~ o o  

In  this and similar cases we assume that  1/0 = oo and 1/oo = 0. 

T h e o r e m  2. Given a noncons tan t  symmetr ic  r.v. i and a sequence 
P l ,  P2 .... of  positive numbers  which tends to 0, consider the r a n d o m  series 

oo 
O= ) '  P k ' ! k  (4)  

k=~ 

where ik are independent  r.v. distributed as i .  

(a) If  D e g ( p k ) >  2 or  D e g ( p k ) >  P-decay( i ) ,  the series (4) diverges. 

(b) If  D e g ( p k ) < 2  and D e g ( p k ) < P - d e c a y ( i ) ,  the series (4) con-  
verges and P - d e c a y ( 0 ) =  P-decay( i ) .  

3 Both statements of (a) are well known and have been proved, e.g., in ref. 6. We include them 
for completeness and to show how easily they follow from our approach. About growth of 
variance of a', see ref. 6. About growth of variance of A~,a t, see Note 1 below. 

4 Based on physical considerations, J. Krug predicted both statements of (b) for the case 
[a[ = 0 (private communication). 
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(c) If  Deg(pk) ----- 2 < P-decay(i) ,  the series (4) converges if and only 
if the series Y.k~ 1 p2 converges. If  the series (4) converges in this case, then 
also P-decay(0) = P-decay(i) .  

There are two intermediate cases: P-decay(i)  > Deg(pk) = 2 and P-decay 
(~) = Deg(pk) ~< 2. The former is and the latter is not covered by Theorem 2. 
Examples 3 and 4 show that both convergence and divergence are possible 
in these cases. 

Now we go to Theorems 3 and 4. Given a symmetric r.v. i ,  let us call 
its exponential decay or E-decay the supremum of those r for which the 
expectation of exp(lxl r) is finite. It  is easy to prove that 

E-decay(~) -- lim inf logx( - I n  P r o b ( i  > x)) (5) 
x ~ o o  

E-decay can equal any nonnegative number  or infinity. For  example, 
E-decay(C) equals r > 0 if dFr = const �9 exp( - Ix[ r). Theorem 3 shows 
that  E-decay of the limit distribution of components  of a harness and of 
their first differences may depend on the dimension of the harness. 

T h e o r e m  3. Assume that E-decay(v)>0 .  Exclude the divergent 
cases d = 1, a = 0 and d = 2, a = (0, 0). In all the other cases A oa t, converges 
a.s., in probabili ty and in law when t ~ oo and: 

�9 If  d >  2, E-decay(l imt~ oo a~) = min(E-decay(v), ( d +  2)/2). 

�9 If  [a[ = 1, E-decay(l imt_ ~ A~ats) = min(E-decay(v), d +  2). 

�9 If  lal >/2, E-decay(l imt_ ~ A~a~) = E-decay(v). 

Theorem 3 is a direct corollary of the following Theorem 4 and Lemma  1. 5 

T h e o r e m  4. Consider the r andom series 

0 =  ~ p ~ . ! k  (6) 
k = l  

where !~ are independent r.v., each distributed as a given nonconstant  sym- 
metric r.v. i ,  such that E - d e c a y ( i ) > 0 .  Also assume that  the sequence 
P~, P2 .... tends to 0 and Deg(p~) = D < 2. Then the series (6) converges and 

i f l )  > 1 and E-decay(i)  > -  
E-decay(0)=  /)  1 / ) -  1 (7) 

(.E-decay(~) otherwise 

5 In  the  specia l  case  d =  ~r = 1 a n  a n a l o g  o f  T h e o r e m  3 w a s  p r o v e d  in ref. 16. 
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It  is easy to prove that E-decay of a sum of several independent symmetric 
r.v. equals the minimum of their E-decays (see formula (25) below). For- 
mula (7) shows that for series this does not need to be true: E-decay of the 
sum of a series may be less than E-decay of every summand. In informal 
terms, formula (7) describes two different mechanisms of formation of a 
large value of the sum (6): it may be caused either by a large value of one 
summand (the second line), or by the accumulation of small values of 
many  summands (the first line). There are analogous observations in the 
physical literature. For  example, ref. 9 concentrates on "the largest noise 
fluctuations" motivating this by the observations that "the interface advan- 
ces in occasional large thrusts which then rapidly spread in the lateral 
direction." This corresponds to the second line of  (7). How does interface 
behave if the first line takes place? It  would be interesting to illustrate the 
difference between the two modes of behavior by computer  simulation. 

2. PROOF OF T H E O R E M  1 

Let us show how Theorem 1 follows from Theorem 2. Since our pro- 
' do not depend on s, so we may cesses are space-uniform, distributions of  a s 

t concentrate on the case s - -0 .  Since the initial conditions are zeros, a 0 are 
t .  linear combinations of some v,.. 

t - - I  

l - -  l n a0- Z (8) 
n ~ 0  S 

where pn(s) denote the coefficients. Hence the iterated differences A~a~ are 
l 

linear combinations of some v~ 

t 1 

Aoato = ~ E A~p~(s). v'~, -n (9) 
n = O  s 

where the coefficients A~pn(s) are iterated differences ofpn(s). Now we can 
use the time-uniformity of our systems to assume that the process starts at 
- t  and rewrite (9) as 

t 1 

A~ a~ = s E A,~p,,(s). v]-" 
n = O  S 

where v j "  are i.i.d, r andom variables, each distributed as v. Going to the 
limit t -+ Go in this formula, we see that the limit behavior of A,~ats depends 
on the convergence of the following random series: 

lim A,.,a's= ~ EA,~p,,(s).vT" (10) 
l ~ ( ~ 3  t * = O  s 
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Lemma 1. The sum of IA~ p A s ) l  ~ over all n = 0, 1, 2 .... and s ~ Z a 
converges if and only if r > ( d +  2 ) / (d+  la[). 

Proof. Lemma 1 is a direct corollary of the following formula ( l l ) .  
For  every r > 0 

IA~pn(s)lr~(~/-n) d-r(a+l~l) when n ~  ~ (11) 
s 

To prove (11), let us introduce a d-dimensional r andom variable co which 
equals v~ ..... vn with probabilities Wl ..... w,. Notice that our coefficients 
p,(s), which were defined above, equal the following probabilities: p,(s) = 
Prob(col + ...  +con =s ) ,  where COl ..... con are i.i.d, variables, distributed as 
co. This representation helps to obtain the following asymptotic expansion 
of A~pn(s), which holds for all aeZa+ and m e Z +  (here m is the number  
of terms in the expansion and the last term is the residue term): 

Pk(xAs)) 
A~p.(s) = exp( - Q(x.(s))) k=o (.v/~)a+ I,.I +k 

R.(s) 
+ (1 + Ilx.(s)llm+2) . (w/-n)d+ I~* +m (12) 

where 

x,(s) - s - -np lim sup IR . ( s ) l  = 0 
r ~  , n ~ o o  S 

/~ is the mean of co, Q(x) is a positive-definite quadratic form, every Pk(x) 
is a polynomial,  and Po(x) is not identically equal to zero. Arguments of  
Q(x) and P~(x) are components  of x; coefficients of Q(x) and P~(x) are 
constants. Equation (12) can be proved by induction based on the Cram~r-  
Edgeworth asymptotic expansion for convolutions of identical lattice distri- 
butions, which is published in a form appropriate  for us as Corollary 22.3 
(p. 237) in Chapter  5 of ref. 2. Lemma 1 is proved. | 

Now to prove Theorem 1. 

Case d = 1, a = 0. In this case (d + 2)/(d + l al ) = 3. F rom Theorem 2 
and Lemma 1, ats certainly diverges. 

Case d = 2 ,  o-=(0 ,0) .  In this case (d+2) / (d+la l )=2 .  This is a 
boundary  case, which is handled by statement (c) of Theorem 2. F rom 
Lemma 1 the sum of squares of p~ diverges, whence the series (4) also 
diverges. 
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In all the other cases (d+ 2) / (d+  [g[) < 2. So, according to Theorem 2, 
the series (10) converges if Deg([A~pn(s)[)< P-decay(v) and diverges if 
Deg(]A~p,(s)[)>P-decay(v). Thus statement (b) of Theorem 1 follows 
from Lemma 1. 

3. PROOF OF T H E O R E M  2 

Given two functions f and g, let f<~ g mean that f = O(g) and let 
f ~ g mean that f ~( g and g ~ f It is easy to prove that 

P-decay(~) = lim inf ( - l o g x  Prob(~ > x))  
x ~ o o  

(13) 

and that P-decay(~) equals the supremum of those r for which 

P r o b ( ~ > x ) ~ x  r when x ~  oo (14) 

When proving the statements (a) and (b) of Theorem 2 we use Kolmogorov's  
three-series theorem. In dealing with the series (4), all the summands of 
which are independent multiples of one and the same symmetric r.v. ~, this 
theorem can be simplified as follows: the series (4) converges if and only if 
the following two series converge: 

and 

Prob(r ~> 1/pk) (15) 
k = l  

p2 f'/Pk X2 dFe(x) (16) 
k = l  ~0 

Proof of  Statement (a). First assume that Deg(p~)>2.  Then 
)Zk~_l p2 diverges. Since the sequence Pk tends to zero and is nonincreasing, 
we can choose k = k o  such that the integral in (16) exceeds a positive 
constant for all k ) k o .  Therefore (16) diverges. ] 

Now assume that Deg(pk)>  P-decay(~) and prove that the series (15) 
diverges. Let us estimate the sum (15) by an integral as follows: 

Prob(r  ~> 1/pk) ~ K(x) dFr -- 1 (17) 
k = l  

where K(x) is defined as the smallest natural k for which x <~ 1/p~. Let us 
choose a such that Deg(p~) > a > P-decay(~). From (3), lim infk~ od-logkpk) 

a< K(x) for x large < 1/a, whence 1/p k < k 1/" for k large enough. Hence x -.~ 
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enough. Hence, since the integral of x a from 0 to ~ diverges, the integral 
(17) also diverges. 

Proof of Convergence in Statement (b). Choose P < P-decay(~) 
and R < 1/Deg(pi) such that R > 1/2 and P- R > 1. After that, due to (14), 
we can choose x0 such that 

if(x) = Prob(~ > x) ~< x - e  for all x >/Xo (18) 

Also, from (3), we can choose ko such that pk~<k -R for all k>~k o. 
Let us prove convergence of (15). F rom (18) for k large enough 

Prob(~ > 1/pk) <~ (1 /pk) -e  = p f  ~< (k -R)e  = k R.e 

Since R . P >  1, the sum of these terms converges. Hence (15) converges 
also. 

Now prove convergence of (16). Denote M=l/p~  and y = x  2 and 
transform the integral in (16) using integration by parts: 

? x d F r  = f?2 

<.f f 

( F( M) - F( x/fy ) ) dy = f ? :  (F (x / /y ) -  if(M)) dy 

M 2 

F(x//-f ) dY = fo2~ F(x/~ ) dy + f x~ F(x/fy ) dy 

Here the first addend does not exceed x~, which is a constant. Let us 
estimate the second one: 

M 2 M 2 M 2 

fxX F(v/Y) aY fxg v/;-" dY= Y P/2 dY 
r 

If P > 2, this integral does not exceed a constant, because we can substitute 
instead of M 2 as the upper limit, and the integral still converges. The 

case P = 2 can be avoided by choosing another P. So let P < 2. Then the 
last integral equals 

const �9 yl -p/2 M 2 <~ const - pf-2 
x 0 

Thus (16) does not exceed 

+ P k  ) P ~ +  Pk 
k = l  k ~ l  k = l  
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Since px<~k R for k>>-ko, these series (several terms omitted) are 
majorized by 

~, k 2 R  ~_ ~, k R.P 
k = k 0  k = k o  

Both series converge due to our choice of P and R. Hence (16) con- 
verges. | 

Proof of  Divergence and Convergence in Statement (c). In one 
direction, Assume that Z P~ diverges. Since p~--* 0, the integral 

o /pk x 2 dF~(x) (19) 

exceeds a positive constant for k > const. Therefore (16) diverges. 

In the other direction. Assume that P-decay(C)> 2 and Z P~ con- 
verges and prove that the series (15) and (16) converge. The series (16) 
converges because the integral (19) does not exceed the integral of the same 
function from zero to infinity, which converges. Let us prove that (15) con- 
verges. Choose a such that 2 < a < P-decay(~). Then, due to (13), 

a < lim inf ( - l o g x  Prob(~ > x)) 
x ~ o o  

whence there is x0 such that Prob(~ > x ) < x  " for all x >  x0. Therefore 
for k large enough the terms of (15) do not exceed p~. The sum 5Z p~ 
converges, because a > 2 and Z p2 converges. ] 

Proof of  Equality in Statements (b) and (c). I t  is easy to prove that 

P-decay(~ + t/) = min(P-decay(~), P-decay(t/)) 

for any independent symmetric r.v. ~ and t/. Hence 

P-decay(0) = P-decay (Pl~l  + ~, P k ~  ~ <~ P-decay(plY1)= P-decay(~) 
\ k = 2  / 

In the other direction: assume that P-decay(0) < P-decay(~) and come to a 
contradiction. Since Deg(pk)< P-decay(~), we can choose r such that 

P-decay(0) ~ < 
Deg(pk) J r<P-decay(~)  

Now consider two cases. 
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Case r < 2. In this case 

E I 0 [ ' ~ 2 .  E l p ~ k l ~ = 2  p2 .EI~I" (20) 
k=l k 1 

This follows from the formula (2.29) on p. 58 of ref. 15 in the case r ~ 1 and 
from the von Bahr-Esseen inequality in the case 1 < r < 2. (See, e.g., the 
formula at the bottom ofp.  33 in ref. 3.) The sum on the right side of (20) 
converges because Deg(pk)< r and E [~1 r is finite because r < P-decay(C). 
Therefore El01 r is also finite, which contradicts our assumption. 

Case r>>,2. In this case it follows from Rosenthal's inequality (see 
e.g.p. 59 of ref. 15) that 

(E [olr)'/r< E [pk~k[ r) -k / Z E Ipk~kl 2 
--1 / \k=l  

= ( (k~ l  P~c) 'E I''r) l/r-[-((k~lP2k)'E 1,[2) 1/2 

Here the first term is finite because Deg(p~)< r < P-decay(C). The second 
term is also finite because Deg(pD ~< 2 < P-decay(C) and 2 P~ converges. 
Therefore E I0[ r is also finite, which contradicts our assumption. | 

4. P R O O F  OF T H E O R E M  4. 

Convergence follows from Theorem 2, because P-decay(~) is infinite 
whenever E-decay(C) is positive. It remains to prove (7). Actually we shall 
prove the following inequalities, where D = Deg(pk): 

E-decay(0) ~E-decay(~) 

D 
E-decay(0) ~ < - -  if D > 1 

D - 1  

(21) 

(22) 

E-decay(0))  E-decay(~) if D ~  1 or 
D 

E-decay(~) ~<D-~-i- 1 (23) 

D D 
E-decay(0) ~> D -----1 if D > 1 and E-decay(~) > D---S~ (24) 

Proof  o f  (21).  It is easy to prove that 

E-decay(~ +0)=min(E-decay(~) ,  E-decay(N)) (25) 
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for any independent symmetric r.v. ~ and q. Hence 

E - d e c a y ( 0 ) = E - d e c a y ( P l ~ l +  f i  Pk~k)~<E-decay(P|~l)=E-decay(~)  
k = 2  

Proof  o f  (22).  Since ~ is symmetric and nonconstant, we can choose 
positive constants C and e such that Prob(~/> C) =e  > 0. Since D > 1, we 
can choose a and b such that l ID < a < b  < 1. Then there is a sequence 
k l ,  k 2 .... ~ ~ such that p k > k ~  a for all i. Let E,  denote the following 
event: 

~k~>C for all k e  { 1,..., n} 

Event E~ given, 

k i 

~ - - a  1 - - a  
p j ~ j  ~ C . k  i. k i = C .  k i 

j = l  

Denote X i = C 1 - a �9 k~ . The probability of E~i is not less than e ki. The prob- 
ability that ~o~ j=ki+~ pj~j~> 0 is not less than 1/2. Therefore 

Prob(O>~ x,) >. �89 k,, where k i = ( x i / C )  l / ( l -a )  

Hence 

In Prob(0/> xi)/> In(1/2) + In e .  (x i /C)  l/(1 - - a )  

Since a < b <  1, the last expression is greater than -x~/<l-b) for large 
enough i. Thus we have presented a sequence xl ,  x2 .... ~ ~ such that 

In Prob(0 >>. x i) >1 - x ~ /(1 - b) for all i 

Therefore E-decay(0)~< 1 / (1 -b) .  Since this is true for any b between 1/D 
and 1, (22) is proved. 

Proof  o f  (23).  In the case E-decay(i) ~< 1 it follows from Theorem 
2.3.2 on p. 41 in ref. 10. Let E-decay( i )>  1. Denote Or the moments 
generation function, or M G F  for short, of 4: 

f 
oo 

~ke(z) = ~(z[ ~) = exp(zx) dFe(x) 
oo 

Since E-decay(i) > 1, this integral converges. 
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I . e m m a  2. Take any symmetric r.v. (. Let E-decay(()  > I. Then for 
any z0 there is C such that In ~pr <~ C. z 2 for all nonnegative z ~< Zo. 

Proof. Since E-decay(()  > 0, P-decay(~) = 0% whence all moments  of 
are finite, whence M G F  has all derivatives at zero. Also note that  M G F  

is even and equals one at z = 0 .  Hence ~br + c o n s t . z  2. Hence 
Lemma 2 follows. | 

Given a symmetric r.v. (, let us call its order the following limit: 

Ord(~) = lim sup logz In ~,r 
z ~ o ~  

Since E-decay(~)>  1, Theorem 2.2.2 on p. 25 of ref. 12 ensures that  the 
characteristic function of ~ is an entire function. What  we call order is the 
same as what ref. 12 calls order and what we call E-decay is the same as 
what is denoted x in ref. 12. This allows us to use the formula (2.4.3) on 
p. 37 of ref. 12 to conclude that 

1 1 
Ord(~) + E-decay(~) = 1 (26) 

Due to (26), it is sufficient to prove that Ord(0)~< Ord(~). Take some 
a >  Ord(~) and prove that Ord(0)<~a. There is z0 such that In ~kr a 
for all z >/z0. After that, due to Lemma 2, we can choose C such that 
In ~9r ~< C. z 2 for all nonnegative z ~< z0. Now consider two cases. 

Case 1. E-decay(~) ~< 2. Remember  that  the M G F  of a convolution 
of several distributions equals the product  of their MGFs.  Hence 

qJo(z)= fi  qdzlpk'~k) = f i  4'e(Pk'Z) 
k = l  k = l  

where 0 is defined in (6). Using this and Lemma 2, we can write 

In qJo(Z) = ~ In q/r z) 
k = l  

k = l  k = l  k = l  

Since E-decay(~) ~< 2, (26) implies Ord(~) ~> 2, whence a > 2. So both  series 
(27) converge. Since z ~  ~ ,  we may  neglect the first addend in (27) and 
write In ~o(Z)-<z a. Hence Ord(0) ~<a. | 
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Case 2. 2 < E-decay(~)  ~< ~ .  Since E-decay(~)  > 2, (26) implies 
Ord(~) < 2. So we may choose a such that Ord(~) < a ~< 2. Then z 2 ~< z a for 
0 ~< z ~< 1. Therefore In ffr < z a for all z, whence 

ln~bo(Z)= ~ l n ~ 4 ( p k . z ) . ~ z  a. ~ p~ (28) 
k - - 1  k - - I  

Since E-decay(~)<~D/(D--1) ,  (26) implies Ord(~)>~ Deg(pk), whence a > 
Deg(pk), whence the series (28) converges. Therefore In tpo(z ) -< z a, whence 
Ord(0)~<a. | 

Proof o f  (24). Due to (26), all we need to prove is Ord(0)~< 
Deg(pk). Since D e g ( p k ) <  2, it is sufficient to choose any b between them 
and prove that Ord(0) ~< b. The assumption E-decay(~) > D / ( D -  1 ) implies 
Ord(~) < Deg(pk). So we can choose some a between them. Thus Ord(~) < 
a < Deg(pk) < b < 2. Since Ord(z)  < a, there is Zo such that  In ~,r ~< z a 
for all z ~> Zo. After that, due to Lemma 2, we can choose C such that 
In ~r ~< C. z 2 for 0 ~< z ~< Zo. Also remember  that  we may assume that the 
sequence pk is nonincreasing. So we can write 

In Oo(Z) = In Or Z) = Z In ~llr Z) -[- In ~9r �9 z) 
k = l  k = l  k - - v  

< 2 (P k ' Z )  a + (Pk 'Z )  2=  za" 2 P~ + za" P~ (29) 
k = l  k = v  k = l  k = v  

where v is such that Pv 1 >~ Zo/Z >1 p~. Since Deg(pk) < b, we can find ko 
such that Pk<~k lib for k>/ko.  Since z ~ , v ~ o o  also, so we may 
assume that v > ko. Therefore Zo/Z <~ pv <~ v ~/b, whence v <~ (Z/Zo) b. Using 
this, we estimate the first sum in (29): 

v 1 k 0 1 v 1 v - -  1 

P ~ =  Z P ~ +  Z p ~ < c o n s t +  y '  k-a/b'~vl-(a/b)'~,Z b-a 
k = l  k = l  k = k  0 k = k  o 

whence the first summand in (29) does not exceed const ,  z b. Now denote 
w = [(z/zo) h] and split the second summand in (29) into two parts: 

: Z + : 
k = v  k - - v  k = w + l  

Here the first summand does not exceed w( )2 
z2 " ~= v ~" w ~ zb 
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The second summand does not exceed 

Z 2" ~ k 2 /b '~ z2 "w l - - (2 /b ) '~ zb  

k = w + l  

Thus In $o(Z)  ~, z b when z ~ ~ .  Therefore Ord(0) ~< b. 
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5. EXAMPLES A N D  NOTES 

E x a m p l e  1. Consider the v-dimensional one-sided harness as defined 
in formula (3.3) of ref. 6 (using notations which are more convenient here): 

a ( r l ,  r2,..., rv) =-1 (a(rl --  1, r2,..., rv) + . . .  + a ( r l ,  r2 ..... rv --  1 )) 
V 

+ ~ ( r  1, . . . ,  rv) 

where ~ is the random noise. The initial condition is 

a(0, r2, r3,..., r~) . . . . .  a ( r l ,  r2,..., rv_  l '  O) = 0 

and the role of time is played by the sum r 1 + .. .  + rj .  By an affine linear 
transformation of the space-time continuum this model can be turned into 
a special case of (1) with d =  v -  1, N =  d +  1, vl ..... va+ l being vertices of a 
simplex, and all wl,. . . ,  wa+l  being equal to each other (and therefore equal 
to 1 / (d+ 1)). For  example, we may take v I =el, . . . ,  v a = e a ,  va+l  =0 ,  where 
el ,..., ed are the orts. The initial condition remains different from ours, but 
our random series approach shows that this difference is unimportant  for 
convergence. 

E x a m p l e  2.  Consider the Edwards-Wilkinson equation in the form 
of (4.1) on p. 135 of ref. 5 

~h 
- -  = V V 2 h  + ~/(r, t) 
Ot 

where h is the height of a sandpile. The first term on the right side 
represents the surface relaxation, v being the diffusion coefficient. The 
second term t/(r, t) is the random noise. This equation is interesting also as 
a linearized version of the KPZ  equationJ 7) If we discretize this equation, 
Oh/Ot turns into h(r, t + 1 ) - h(r, t), VZh turns into a linear combination of 
h(r + vi, t), where r + vi are several neighbors of r, and the whole equation 
turns into a special case of (1). 
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Example 3. 

with r > 2. Take 

Take ~ distributed as 

dFr const 

dx 1 + Ix[ r+l 
(30) 

I 1 
p ~ = x / ~  or pk - - x /~ . l n ( k  +e ) 

The series Z P~ diverges in the former case and converges in the latter. 
Therefore the series ~2 Pk~k diverges in the former case and converges in 
the latter. This example shows that both  divergence and convergence of (4) 
are possible for all values of P -decay(~)>  D e g ( p k ) =  2. 

Example 4. Take ~ defined by (30) with 0 < r < 2 .  Take 

p k = k  -j/r or pk=p-1/r . ln-2/r(k  +e) 

In the former case both (15) and (16) diverge, in the latter case both 
converge. This example shows that  both divergence and convergence of 
(4) are possible for all values of P-decay(~) and Deg(p , )  in the range 
0 < P-decay(~) = Deg(pk) < 2. 

Note 7. Following ref. 6, we might assume that v has a variance, 
and ask how the variances of A,a '  s behave when t --* o0. F rom (9) 

t - -1  

Var(A~a~)) = Var(v) .  ~ ~ (A.p.(s))  2 
n = O  S 

and it remains to examine how this sum behaves when t ~ oe. F rom (11 ) 

s 

A series with these terms converges if and only if d +  2 lal > 2, that  is, in 
all cases except those mentioned in Theorem 1. In more  detail: 

If  d = 1 and a = 0, 

If  d = 2 and a = (0, 0), 

t - - I  t - - I  1 
I2 I; =,/7 

n = 0  S I t = 0  ~ / n  

t~l  t-1 1 
Z (P-(S)) 2 ~ Z - ~ log t 

n=0 s n=0 n 
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In all the other cases Var(lim, + o~ A,a~.) is finite. Thus we repeat some of 
the results of ref. 6 by other means. 

Example 5. Take ~ distributed as 

dr~(x) 
dx 

= const ,  exp(- -  [x["), where r > 0 

Take 

1 1 
pk=v/~ or pk--x/~.ln2( k +e) 

The series (6) diverges in the former case and converges in the latter. Thus 
both convergence and divergence of (6) are possible for every value of 
E-decay(~) if Deg(pk) = 2. 

Note 2. In both  Theorems 3 and 4 we excluded the case when 
E-decay of v, resp. ~, is zero. However, all the assertions of our theorems 
are true in this case also as soon as convergence takes place, 

Note 3. Another case which we excluded from Theorem 4 is when 
Deg(p~) =2 ,  but the series (6) still converges, because the series ~ p 2  
converges. In this case the formula (7) is also true. To check this, one can 
review the arguments and see that whenever we use the condition Deg(pk) < 
2, all we actually need is convergence of Z p2. Only when proving (24) did 
we have to be careful. Instead of assuming D e g ( p ~ ) < b  < 2 ,  we should 
assume D e g ( p k ) =  2 < b and when estimating the last addend, we should 
refer to convergence of Z p2. 
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